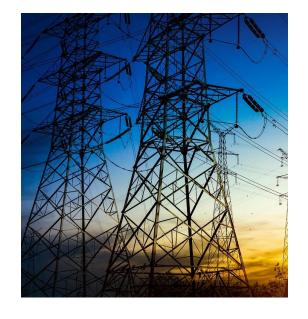
Consequences of Flexible Power Plant Operation Experiences from vgbe's Service Division

November 2023

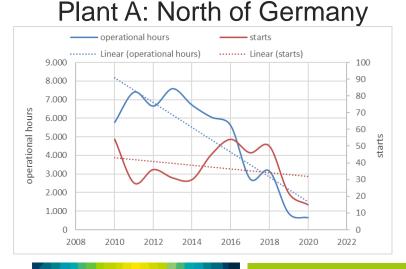
Operational Regime of Coal-Fired Plants: in the Past


- Regularly the plants had more than 7,000 full load operational hours per year
- > Plants were only shut down for maintenance
- > Creep was the main damage mechanism on the components
- Number of starts in correlation to the operational hours was low nearly no impact on lifetime consumption
- > vgbe standards compile best practices to optimize:

 \rightarrow Operation

 \rightarrow Inspection

→ Maintenance



Operational Regime of Coal-Fired Plants: over the Years

- > Number of starts in correlation to the operational hour is increasing \rightarrow more flexible operation
- > Operational hours clearly decreasing in the last decade at all locations \rightarrow less creep exposure
- > Number of starts very dependent on plant location \rightarrow partly higher exposure
- > Lifetime consumption due to cyclic exposure becomes more dominant at some locations
- Lifetime consumption at many locations is not significantly influenced due to reduced operation

Plant B: Middle of Germany

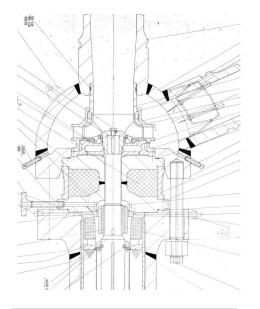
Plant C: South of Germany

Consequences of a Changed Operational Regime

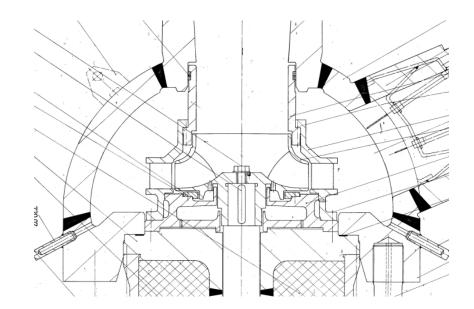
- > Consequences are very plant depended and can differ
- For many plants no negative effect on the "yearly" lifetime consumption expected → expected to reach year 2035 without "flexibility" damage
- → Longer periods of non-operation → **preservation concepts**
- > Cycling operation requires:
 - generally more complicated lifetime monitoring
 - different inspection methods
 - strict water chemistry management
- > Some plants are more affected by cycling
- > Up to now no significant increase in damages due to cyclic operation observed → however some specific failure occurred

Lessons Learned

Example: Damage Event in a Boiler Recirculation Pump 1/3

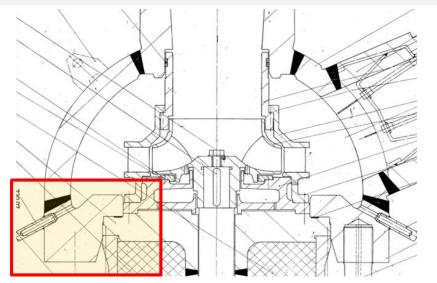

- > Failure of recirculation pump led to a massive damage in one German plant
- > Operational hours of the plant approx. 170,000 hours
- > Approx. 1,400 starts/stops
- > Pump was inspected with conventional methods some time before
- > Identification of root cause to be carried out

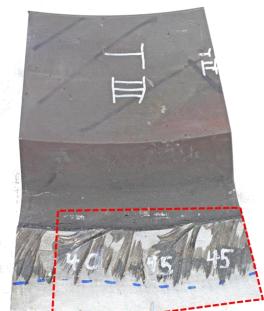
Example: Damage Event in a Boiler Recirculation Pump 2/3


- > 20 years of operation and changed operational regime led to damage
- > Stresses are concentrated in the notch
- > Many pumps with similar design were investigated

Overview drawing

Overview picture


Detailed drawing of the casing



Example: Damage Event in a Boiler Recirculation Pump 3/3

Failure investigation showed following results:

- Macroscopically clear line of crack arrest → cyclic crack propagation
- > Stresses were concentrated in the notch
- > Pump was not pre-heated during periods of not operating
- > Higher oxygen content present in the water allowed attack

Cleaned fracture surface

Conclusions

Example: damages a boiler circulation pump:

- ✓ Several cracks are initiated in the notch
- ✓ Starting points are corrosive/oxidative attacks
- $\checkmark\,$ Clear cyclic growth can be detected
- $\checkmark\,$ Clear characteristics of strain induced corrosion cracking
- \rightarrow Optimize design for cyclic/flexible operation
- \rightarrow Pre-heating to reduce stresses

O&M:

- ✓ Exposure will be plant dependent
- ✓ Generally cyclic exposure becomes more relevant
- $\checkmark\,$ Different inspection methods to be applied
- Adjusting other operational parameters (e.g. water chemistry, warming-up components, preservation...)

Thank you for your attention

be energisedbe inspiredbe connectedbe informed

Contact

Dr. Christian Ullrich vgbe energy service GmbH Managing Director Deilbachtal 173 45257 Essen (Germany)

- E <u>christian.ullrich@vgbe.energy</u>
- M +49 151 1824 8065 I www.vgbe.energy

